An isoform-specific inhibitory domain regulates the LHX3 LIM homeodomain factor holoprotein and the production of a functional alternate translation form.
نویسندگان
چکیده
The LHX3 LIM homeodomain transcription factor is required for pituitary development and motor neuron specification. The Lhx3 gene encodes two isoforms, LHX3a and LHX3b, that differ in their amino-terminal sequences. Humans and mice with defective Lhx3 genes are deficient in gonadotrope, lactotrope, somatotrope, and thyrotrope pituitary cells. We show that, whereas Lhx3b is highly expressed in these Lhx3-dependent cell types, high levels of Lhx3a expression are restricted to alpha glycoprotein subunit-expressing thyrotropes and gonadotropes. Cross-species comparison reveals the LHX3b-specific domain is more conserved than the LHX3a-specific domain. We demonstrate that the LHX3b-specific domain is a transferable inhibitor that reduces gene activation and DNA binding by homeodomain proteins. In addition, we identify a novel LHX3 protein (M2-LHX3) and determine that this molecule is generated by an internal translation initiation codon. The LHX3a- and LHX3b-specific coding sequences regulate differential usage of this internal start codon. Further, we identify the major activation domain of LHX3 in the carboxyl terminus of the molecule. M2-LHX3 is active because it retains this domain and binds DNA better than LHX3a or LHX3b. Other LIM homeodomain genes, including Lhx4, generate similar truncated proteins. These studies describe how transcriptional regulatory genes can generate multiple functional proteins.
منابع مشابه
Implementing the LIM code: the structural basis for cell type-specific assembly of LIM-homeodomain complexes.
LIM-homeodomain (LIM-HD) transcription factors form a combinatorial 'LIM code' that contributes to the specification of cell types. In the ventral spinal cord, the binary LIM homeobox protein 3 (Lhx3)/LIM domain-binding protein 1 (Ldb1) complex specifies the formation of V2 interneurons. The additional expression of islet-1 (Isl1) in adjacent cells instead specifies the formation of motor neuro...
متن کاملSolution Structure of the LIM-Homeodomain Transcription Factor Complex Lhx3/Ldb1 and the Effects of a Pituitary Mutation on Key Lhx3 Interactions
Lhx3 is a LIM-homeodomain (LIM-HD) transcription factor that regulates neural cell subtype specification and pituitary development in vertebrates, and mutations in this protein cause combined pituitary hormone deficiency syndrome (CPHDS). The recently published structures of Lhx3 in complex with each of two key protein partners, Isl1 and Ldb1, provide an opportunity to understand the effect of ...
متن کاملCritical Roles of the LIM Domains of Lhx3 in Recruiting Coactivators to the Motor Neuron-Specifying Isl1-Lhx3 Complex.
During spinal cord development, the LIM domains of the LIM homeodomain factor Lhx3 bind to either the LIM cofactor nuclear LIM interactor (NLI) or another LIM homeodomain factor, Isl1, assembling the tetrameric V2 interneuron-specifying Lhx3 complex (2NLI:2Lhx3) or the hexameric motor neuron-specifying Isl1-Lhx3 complex (2NLI:2Isl1:2Lhx3). However, the detailed molecular basis by which the Lhx3...
متن کاملLIM Factor Lhx3 Contributes to the Specification of Motor Neuron and Interneuron Identity through Cell-Type-Specific Protein-Protein Interactions
LIM homeodomain codes regulate the development of many cell types, though it is poorly understood how these factors control gene expression in a cell-specific manner. Lhx3 is involved in the generation of two adjacent, but distinct, cell types for locomotion, motor neurons and V2 interneurons. Using in vivo function and protein interaction assays, we found that Lhx3 binds directly to the LIM co...
متن کاملChip is an essential cofactor for apterous in the regulation of axon guidance in Drosophila.
LIM-homeodomain transcription factors are expressed in subsets of neurons and are required for correct axon guidance and neurotransmitter identity. The LIM-homeodomain family member Apterous requires the LIM-binding protein Chip to execute patterned outgrowth of the Drosophila wing. To determine whether Chip is a general cofactor for diverse LIM-homeodomain functions in vivo, we studied its rol...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 276 39 شماره
صفحات -
تاریخ انتشار 2001